
1. Introduction

In C++, structure and union are user-defined data types that allow grouping of different types of
variables under a single name. They help in organizing data efficiently and improving code readability.

 Structure: Stores multiple variables of different types as a single unit.
 Union: Stores multiple variables of different types, but only one variable can hold a value at a

time.

Both are useful for representing complex real-world entities like student records, employee details, etc.

2. Structure in C++

A structure is a collection of variables of different data types grouped together under one name. It is
defined using the struct keyword.

Syntax
struct StructureName {
 data_type member1;
 data_type member2;
 ...
};

3. Declaration of Structure Variables

After defining a structure, you can declare variables of that type.

Example
struct Student {
 int roll;
 char name[20];
 float marks;
};

Student s1, s2;

s1 and s2 are two variables of type Student.

4. Accessing Structure Members

Members of a structure are accessed using the dot operator (.).

Example
s1.roll = 101;
strcpy(s1.name, "Ravi");
s1.marks = 95.5;

5. Initialization of Structures

Structures can be initialized at the time of declaration.

Student s1 = {101, "Ravi", 95.5};

6. Nested Structures

A structure can contain another structure as a member.

Example
struct Date {
 int day, month, year;
};

struct Student {
 int roll;
 char name[20];
 Date dob;
};

7. Array of Structures

You can create an array of structures to store multiple records.

Example
Student students[50];

Access individual elements using index:

students[0].roll = 101;

8. Pointers to Structures

 Pointers can be used to refer to structures
 Access members using the arrow operator (->)

Example
Student s1 = {101, "Ravi", 95.5};
Student *ptr = &s1;
cout << ptr->roll;

9. Functions and Structures

Structures can be passed to functions by:

 Value: A copy is passed
 Reference (pointer): Original structure can be modified

Example
void display(Student s) { cout << s.roll; }

10. Union in C++

A union is similar to a structure, but only one member can store a value at a time. It shares the same
memory location for all its members.

 Defined using the union keyword
 Efficient memory usage
 Useful when only one of the variables is required at a time

11. Syntax of Union

union UnionName {
 int intVar;
 float floatVar;
 char charVar;
};

12. Declaration and Access

union Data {
 int i;
 float f;
 char c;
};

Data d;
d.i = 10;
d.f = 5.5; // overwrites previous value

Access members using the dot operator.

13. Size of Union

The size of a union is equal to the size of its largest member. This is because all members share the
same memory location.

14. Differences Between Structure and Union

Feature Structure Union

Memory allocation Separate for each member Shared among members

Size Sum of sizes of all members Size of largest member

Usage Store all members simultaneously Store only one member at a time

Access Dot operator (.) Dot operator (.)

15. Nested Unions

Unions can also contain other unions or structures as members.

Example
union Data {
 int i;
 struct {
 char c;
 float f;
 } inner;
};

16. Structures vs Classes

 Classes in C++ are similar to structures but provide encapsulation, access specifiers,
constructors, and destructors

 Structures are primarily used for simple data grouping

17. Typedef with Structures/Unions

typedef can be used to create a new type name for structure or union.

Example
typedef struct Student {
 int roll;
 char name[20];
} Stu;

Stu s1; // no need to write 'struct Student'

18. Advantages of Structures

 Organizes data logically
 Simplifies complex data
 Supports arrays and pointers
 Can be nested

19. Advantages of Unions

 Efficient memory usage
 Useful for variant data storage
 Simplifies certain programming scenarios

20. Applications

Structures:

 Student, Employee, Product records
 Database management
 Game programming

Unions:

 Storing variant data types
 Memory-efficient design
 Embedded systems
 File format parsers

21. Common Mistakes

 Accessing multiple union members simultaneously
 Not initializing members of structure/union
 Confusing structures and unions
 Forgetting to use pointers correctly

22. Best Practices

 Use structures for grouping related data
 Use unions when memory optimization is required
 Prefer classes for advanced OOP concepts

 Initialize members properly

23. Conclusion

Structures and unions are powerful tools for data organization in C++.

 Structures: Store multiple values simultaneously
 Unions: Save memory by storing only one value at a time

Understanding their usage is essential for efficient programming, memory management, and creating
real-world applications.

