1. Introduction

In C++, structure and union are user-defined data types that allow grouping of different types of
variables under a single name. They help in organizing data efficiently and improving code readability.

e Structure: Stores multiple variables of different types as a single unit.
e Union: Stores multiple variables of different types, but only one variable can hold a value at a

time.

Both are useful for representing complex real-world entities like student records, employee details, etc.

2. Structure in C++

A structure is a collection of variables of different data types grouped together under one name. It is
defined using the struct keyword.

Syntax

struct StructureName {
data_type memberl;

data_type member2;

3. Declaration of Structure Variables

After defining a structure, you can declare variables of that type.

Example

struct Student {
int roll;
char name[20];
float marks;

b

Student s1, s2;

s1 and s2 are two variables of type Student.

4. Accessing Structure Members

Members of a structure are accessed using the dot operator (.).

Example
sl.roll =101;

strcpy(s1l.name, "Ravi");
sl.marks = 95.5;




5. Initialization of Structures

Structures can be initialized at the time of declaration.

Student s1 = {101, "Ravi", 95.5};

6. Nested Structures

A structure can contain another structure as a member.

Example

struct Date {
int day, month, year;

b

struct Student {
int roll;
char name[20];
Date dob;

7. Array of Structures

You can create an array of structures to store multiple records.

Example

Student students[50];

Access individual elements using index:

students[0].roll = 101;

8. Pointers to Structures

o Pointers can be used to refer to structures
e Access members using the arrow operator (->)

Example
Student s1 ={101, "Ravi", 95.5};

Student *ptr = &s1;
cout << ptr->roll;

9. Functions and Structures



Structures can be passed to functions by:

e Value: A copy is passed
e Reference (pointer): Original structure can be modified

Example

void display(Student s) { cout << s.roll;

10. Union in C++

A union is similar to a structure, but only one member can store a value at a time. It shares the same
memory location for all its members.

e Defined using the union keyword

o Efficient memory usage
e Useful when only one of the variables is required at a time

11. Syntax of Union

union UnionName {
int intVar;

float floatVar;
char charVar;

)

12. Declaration and Access

union Data {
int i;
float f;
charc;

b

Data d;
di=10;
d.f=5.5; // overwrites previous value

Access members using the dot operator.

13. Size of Union

The size of a union is equal to the size of its largest member. This is because all members share the
same memory location.



14. Differences Between Structure and Union

Feature Structure Union
Memory allocation Separate for each member Shared among members
Size Sum of sizes of all members Size of largest member
Usage Store all members simultaneously Store only one member at a time
Access Dot operator (.) Dot operator (.)

15. Nested Unions

Unions can also contain other unions or structures as members.

Example

union Data {
int i;
struct {
charc;
float f;
}inner;

};

16. Structures vs Classes

e C(Classes in C++ are similar to structures but provide encapsulation, access specifiers,
constructors, and destructors
e Structures are primarily used for simple data grouping

17. Typedef with Structures/Unions

typedef can be used to create a new type name for structure or union.

Example

typedef struct Student {
int roll;
char name[20];

} Stu;

Stu s1; // no need to write 'struct Student'



18. Advantages of Structures

Organizes data logically
Simplifies complex data
Supports arrays and pointers
Can be nested

19. Advantages of Unions

Efficient memory usage
Useful for variant data storage
Simplifies certain programming scenarios

20. Applications

Structures:

Student, Employee, Product records
Database management
Game programming

Unions:

Storing variant data types
Memory-efficient design
Embedded systems

File format parsers

21. Common Mistakes

Accessing multiple union members simultaneously

Not initializing members of structure/union
Confusing structures and unions
Forgetting to use pointers correctly

22. Best Practices

Use structures for grouping related data

Use unions when memory optimization is required

Prefer classes for advanced OOP concepts



o Initialize members properly

23. Conclusion

Structures and unions are powerful tools for data organization in C++.

e Structures: Store multiple values simultaneously
e Unions: Save memory by storing only one value at a time

Understanding their usage is essential for efficient programming, memory management, and creating
real-world applications.



